
An Application of Stochastic Context Sensitive

Grammar Induction to Transfer Learning:

Appendix

Eray Özkural

May 26, 2014

Appendix

Derivation Lattice

A derivation lattice that shows the derivation of the expression (sqr (sqr x)

using a subset of a stochastic grammar for Scheme is provided in Fig. 1. We
do not demonstrate the entire grammar here because it is too long for a single
example. Instead, we refer to a small fragment which is appropriate for display.
Here, we show how how a context-sensitive grammar can encode type informa-
tion, whereas the grammar can distinguish between number variables and string
variables. The derivation we are going to demonstrate is the following:

(define(sqrx) < body >)⇒∗ (define(sqrx)(∗xx)), (1)

which we reduce to the derivation of a single non-terminal body:

< body >⇒∗ (define(sqrx)(∗xx)). (2)

Sample Stochastic Grammar Fragment for Scheme

Following are rules for the stochastic grammar fragment for the example in
Scheme. The syntax of the rules follow the typical Baus-Naur Form, where non-
terminals are written as a-nonterminal, and terminals are written as a-terminal.
A variable∗ denotes that the non-terminal is repeated zero or more times, while
variable+ denotes that the non-terminal is repeated one or more times. The only
change is that, under each rule, the probability of the rule is written in addition.
This grammar fragment is a subset of the Scheme grammar that we use in our
prototype system. It is only given for demonstrating how the derivation lattice
may be used to derive a sentence from a given stochastic grammar.

Note that context-sensitive productions have been added for the sake of
demonstration of useful derivation compression.

body→1.0 definition∗sequence

sequence→1.0 command∗expression

command→1.0 command∗expression

1



num-
variable

body

definition_star sequence

command_star

Ɛ

expression

procedure-call

Ɛ

std-procedure

* operand operand

R1

x

R1

R1 R1

R1 R1

R1

R1

R1

num-
variable

x

R1

R1

variable

R1

Figure 1: A sample derivation lattice

2



procedure-call→0.2 (operator operand∗)

procedure-call→0.4 std-procedure

procedure-call→0.4 previous-solution

std-procedure→0.2 * operand+

std-procedure→0.2 + operand+

std-procedure→0.1 - operand+

std-procedure→0.1 / operand+

std-procedure→0.1 string? str-operand

std-procedure→0.1 string? make-string

std-procedure→0.1 string-length str-operand+

std-procedure→0.1 string-append str-operand+

operand→1.0 expression

* operand→0.9 num-operand

* operand→0.1 2

expression→0.2 variable

expression→0.1 literal

expression→0.1 procedure-call

expression→0.1 lambda-expression

expression→0.1 conditional

expression→0.1 assignment

expression→0.1 derived-expression

expression→0.1 abstract-expression

expression→0.1 frequent-expression

variable→0.5 num-variable

variable→0.5 str-variable

num-variable→0.6 x

num-variable→0.4 y

str-variable→0.6 s

str-variable→0.4 w

3


