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Appendix

Derivation Lattice

A derivation lattice that shows the derivation of the expression (sqr (sqr x)
using a subset of a stochastic grammar for Scheme is provided in Fig. 1. We
do not demonstrate the entire grammar here because it is too long for a single
example. Instead, we refer to a small fragment which is appropriate for display.
Here, we show how how a context-sensitive grammar can encode type informa-
tion, whereas the grammar can distinguish between number variables and string
variables. The derivation we are going to demonstrate is the following:

(define(sqrz) < body >) =" (define(sqrz)(*zx)), (1)
which we reduce to the derivation of a single non-terminal body:

< body >=" (define(sqrz)(xzx)). (2)

Sample Stochastic Grammar Fragment for Scheme

Following are rules for the stochastic grammar fragment for the example in
Scheme. The syntax of the rules follow the typical Baus-Naur Form, where non-
terminals are written as a-nonterminal, and terminals are written as a-terminal.
A variable* denotes that the non-terminal is repeated zero or more times, while
variable™ denotes that the non-terminal is repeated one or more times. The only
change is that, under each rule, the probability of the rule is written in addition.
This grammar fragment is a subset of the Scheme grammar that we use in our
prototype system. It is only given for demonstrating how the derivation lattice
may be used to derive a sentence from a given stochastic grammar.

Note that context-sensitive productions have been added for the sake of
demonstration of useful derivation compression.
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Figure 1: A sample derivation lattice
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