An Application of Stochastic Context Sensitive
Grammar Induction to Transfer Learning:
Appendix

Eray Ozkural
May 26, 2014

Appendix

Derivation Lattice

A derivation lattice that shows the derivation of the expression (sqr (sqr x)
using a subset of a stochastic grammar for Scheme is provided in Fig. 1. We
do not demonstrate the entire grammar here because it is too long for a single
example. Instead, we refer to a small fragment which is appropriate for display.
Here, we show how how a context-sensitive grammar can encode type informa-
tion, whereas the grammar can distinguish between number variables and string
variables. The derivation we are going to demonstrate is the following:

(define(sqrz) < body >) =" (define(sqrz)(*zx)), (1)
which we reduce to the derivation of a single non-terminal body:

< body >=" (define(sqrz)(xzx)). (2)

Sample Stochastic Grammar Fragment for Scheme

Following are rules for the stochastic grammar fragment for the example in
Scheme. The syntax of the rules follow the typical Baus-Naur Form, where non-
terminals are written as a-nonterminal, and terminals are written as a-terminal.
A variable* denotes that the non-terminal is repeated zero or more times, while
variable™ denotes that the non-terminal is repeated one or more times. The only
change is that, under each rule, the probability of the rule is written in addition.
This grammar fragment is a subset of the Scheme grammar that we use in our
prototype system. It is only given for demonstrating how the derivation lattice
may be used to derive a sentence from a given stochastic grammar.

Note that context-sensitive productions have been added for the sake of
demonstration of useful derivation compression.

body —1 .o definition*sequence
sequence —1.9 command*expression

* .
command — 1.9 command” expression

body

definition_star

sequence

R1

Kl

command_star

expression

]

procedure-call

!
<D

std-procedure

R1
[* ’ operand operand
vgﬁgl])]e variable
© @
M num-
variable

!
G

Figure 1: A sample derivation lattice

procedure-call — o (operator operand™)
procedure-call —(4 std-procedure

procedure-call — 4 previous-solution

std-procedure —g o * operand™

std-procedure —g. o + operandJr

std-procedure —.1 - operand+

std-procedure — 1 / operand+

std-procedure —»q.1 string? str-operand
std-procedure — 1 string? make-string
std-procedure —.; string-length str-operand™

std-procedure —(1 string-append str-operand™

operand —1 ¢ expression
* operand —g.9 num-operand

* operand —q.1 2

expression — o variable

expression —(1 literal

expression —+(.1 procedure-call
expression —(.1 lambda-expression
expression —>g.1 conditional
expression —(.1 assignment
expression —.1 derived-expression
expression —+(.1 abstract-expression

expression —(.1 frequent-expression

variable — 5 num-variable
variable —(5 str-variable
num-variable —g g X
num-variable =g 4 y
str-variable —g.¢ S

str-variable =g 4 W

